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Summary

Sib pair–selection strategies, designed to identify the
most informative sib pairs in order to detect a quanti-
tative-trait locus (QTL), give rise to a missing-data prob-
lem in genetic covariance-structure modeling of QTL
effects. After selection, phenotypic data are available for
all sibs, but marker data—and, consequently, the iden-
tity-by-descent (IBD) probabilities—are available only in
selected sib pairs. One possible solution to this missing-
data problem is to assign prior IBD probabilities (i.e.,
expected values) to the unselected sib pairs. The effect
of this assignment in genetic covariance-structure mod-
eling is investigated in the present paper. Two maximum-
likelihood approaches to estimation are considered, the
pi-hat approach and the IBD-mixture approach. In the
simulations, sample size, selection criteria, QTL-in-
creaser allele frequency, and gene action are manipu-
lated. The results indicate that the assignment of prior
IBD probabilities results in serious estimation bias in the
pi-hat approach. Bias is also present in the IBD-mixture
approach, although here the bias is generally much
smaller. The null distribution of the log-likelihood ratio
(i.e., in absence of any QTL effect) does not follow the
expected null distribution in the pi-hat approach after
selection. In the IBD-mixture approach, the null distri-
bution does agree with expectation.

Introduction

Genetic covariance-structure modeling has recently been
extended to include the analysis of quantitative-trait loci
(QTL) in sib-pair data (Schork 1993; Amos 1994; Eaves
et al. 1996; Fulker and Cherny 1996; Almasy and Blan-
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gero 1998). More-traditional methods of linkage anal-
ysis using sib-pair data are based either on the regression
of squared phenotypic sib-pair differences on the mean
proportion of alleles shared identically by descent (IBD)
(Haseman and Elston 1972; for a related approach, see
either the work of Kruglyak and Lander [1995) or on
IBD information alone (Blackwelder and Elston 1985;
Risch and Zhang 1995; Gu et al. 1996). Compared with
these methods, genetic covariance-structure modeling
has several advantages. It is statistically more powerful
(Fulker and Cherny 1996), and it is more flexible in that
it can handle multivariate data (Eaves et al. 1996) and
general pedigrees (Almasy and Blangero 1998). The
analysis of multivariate sib-pair data, in turn, has been
shown to increase appreciably the power to detect a QTL
(Martin et al. 1997; Boomsma and Dolan 1998).

In addition to this advance in genetic covariance-struc-
ture modeling, the feasibility of detection of QTLs in
humans has been enhanced greatly by selective sampling
strategies (Blackwelder and Elston 1985; Carey and Wil-
liamson 1991; Cardon and Fulker 1994; Eaves and
Meyer 1994; Risch and Zhang 1995, 1996). It is well
established that the sib pairs who are extreme and con-
cordant—or extreme and discordant—for the quanti-
tative phenotype provide the most information for de-
tection of the presence of a QTL.

The analysis of selected sib-pair data in genetic co-
variance-structure modeling poses a missing-data prob-
lem. After selection, phenotypic information is available
for all sib pairs, but marker data are limited to the se-
lected sib pairs. There are two solutions to this problem.
On the one hand, one can analyze the data on the se-
lected sib pairs and discard the phenotypic data on the
unselected sib pairs. This option requires a modification
of the estimation procedure, to accommodate the effects
of selection of the phenotypic bivariate or multivariate
distribution. In the case of multivariate normal data, this
strategy is feasible. For instance, Neale and Eaves (1993)
used this strategy to correct for volunteer bias. On the
other hand, one can assign IBD data in the sib pairs who
are not selected for genotyping. Eaves et al. (1996) have
proposed the use of the expected values of the IBD prob-
abilities in those sib pairs whose marker data are miss-
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ing. This approach has the advantages that it is easy to
implement and uses all available phenotypic data.

The aim of the present report is to investigate the
effects that this treatment of missing data has on the
parameter estimates and goodness-of-fit tests in covar-
iance-structure modeling of a QTL in sib-pair data. Al-
though a number of simulation studies of selective sam-
pling have been reported (e.g., see Cardon and Fulker
1994), we do not know of any results pertaining to es-
timation bias per se. Here we perform four simulation
studies. In each simulation study, we assume that sib
pairs are selected, on the basis of a phenotypic criterion,
from a large representative sample. In the next section,
the model used to simulate and fit the data is presented.
Subsequently, we describe the four simulation studies
and present the results.

Genetic Covariance-Structure Modeling of a QTL in
Sib-Pair Data

Since we are concerned, in our simulations, with a
univariate phenotype observed in sibships consisting of
two full sibs, we limit our presentation accordingly. Let
yij denote the phenotypic score of sib j ( ) inj � 1 or 2
sib pair i ( ). The phenotypic scores are mod-i � 1, ) ,N
eled as follows:

y � m � aA � eE � q Qa � q Qd . (1)ij ij ij a ij d ij

In equation (1), m is the phenotypic mean, Aij is the
additive polygenic deviation score, and Eij is the un-
shared environmental deviation score. In practice, mea-
surement error is included in Eij. The variables Qaij and
Qdij represent the QTL; Qaij is the additive deviation
(or centered breeding value), and Qdij is the dominance
deviation (Falconer 1990). All latent random variables
(A, E, Qa, and Qd) are standardized (unit variance and
zero mean). The contribution of each latent variable to
the phenotypic individual differences is determined by
the size of the regression coefficients, a, e, qa, and qd.

We assume that we have at our disposal marker data
at a single marker locus situated 0 cM from the QTL.
The marker data are observed both in the sib pairs and
in their parents. The degree of genetic relatedness of the
members of a sibship at the QTL depends on the number
of alleles that they share IBD at the QTL. On the basis
of the marker data, the probabilities of the sibs sharing
0, 1, and 2 alleles IBD can be calculated. It is convenient
to consider the proportion of alleles shared IBD, instead
of the actual number of alleles. These are denoted
“ ,” “ ,” and “ .” The condi-t � 0/2 t � 1/2 t � 2/21 2 3

tional (i.e., on the marker data) probabilities are denoted
“P(0)i,” “P(.5)i,” and “P(1)i,” where the parentheses
contain the proportions and the subscript i indicates sib
pair. Given random mating, the prior values of these

probabilities are , , andP(0) � .25 P(.5) � .5 P(1) �
. Note that we drop the sib-pair index to denote the.25

expected values.
The phenotypic mean and variance do not depend on

the IBD status, but the phenotypic covariance of the sibs
does. Let the vector yi equal [yi1 yi2]

t. Conditional on
IBD status, this vector is distributed approximately as

. Except for the constraint that the phe-y d t ∼ N(m, S )i k tk

notypic mean of sib 1 equals that of sib 2, the mean
vector is not modeled. The ( ) phenotypic covari-2 # 2
ance matrix is modeled as follows: . ThetS � LW Lt tk k

matrix L contains the regression coefficients, or factor
loadings:

a e q q 0 0 0 0a dL � .[ ]0 0 0 0 a e q qa d

The symmetric matrix is the correlation matrix ofWtk

the latent variables in the model:

1⎡ ⎤
0 1
0 0 1
0 0 0 1

W � .
.5 0 0 0 1
0 0 0 0 0 1⎢ ⎥0 0 r 0 0 0 1atk

0 0 0 r 0 0 0 1⎣ ⎦dtk

If ( ), and both equal 0; ifk � 1 IBD � 0 r r k � 2a dt tk k

( ), equals 0 and equals .5; finally, ifIBD � 1 r rd at tk k

, and both equal 1 ( ).k � 3 r r IBD � 2a dt tk k

The variance components, and , and the mean,2 2q qa d

m, depend on the biallelic QTL. Let p denote the fre-
quency of the increaser allele, B. Furthermore let the
midparent point and the genotype deviation associated
with BB equal 0 and d, respectively. Finally, let h denote
the dominance deviation associated with the heterozy-
gote (Bb). Under random mating, we have m � (p �

, , and2 2q)d � 2p(1 � p)h q � 2pq{d � [p � (1 � p)]h}a

(e.g., see Falconer 1990).2 2 2 2q � 4p (1 � p) hd

Following Fulker and Cherny (1996, eqq. [8] and
[12]), we estimate maximum-likelihood parameters by
maximizing either of two raw-data log-likelihood func-
tions. The first takes into account the fact that, given
less than perfectly informative markers, the phenotypic
distribution is a normal mixture:

N 3
1

�L (v) � ln P(t ) (2p dS d) 2� �mix k i tk{
i�1 k�1

1
t �1exp � (y � m) S (y � m) . (2)i t ik[ ]}2
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Table 1

Distribution of p and IBD Probabilities, as a Function of m, the Number of
Equifrequent Marker Alleles

p P(0) P( )1
2 P(1) PROPORTION

FREQUENCY WHEN m �

8 12 48 �

0 1 0 0 1 3 2 3[ (m � 2m � 1)]/m4 .1880 .2085 .2396 .25
1
4

1
2

1
2 0 2(m � 1)/m .1094 .0764 .0204 0

1
2 0 1 0 1 2 2[ (m � 2m � 1)]/m2 .3828 .4201 .4794 .5
1
2

1
4

1
2

1
4 1/m2 .0156 .0069 .0004 0

1
2

1
2 0 1

2
1 3[ (m � 1)]/m2 .0068 .0032 .0002 0

3
4 0 1

2
1
2

2(m � 1)/m .1094 .0764 .0204 0

1 0 0 1 1 3 2 3[ (m � 2m � 1)]/m4 .1880 .2085 .2396 .25

Table 2

Percentages Associated with FI- and NI-
Selection Criteria Used in Simulation Study 1

SELECTION

DISCORDANTa CONCORDANTb

Low High Low High

:N � 5,000
NI 21 79 11 89
FI:

p � .2 33 90 07 83
p � .5 20 80 13 87
p � .7 13 70 15 90

:N � 10,000
NI 17 83 08 92
FI:

p � .2 38 93 03 90
p � .5 15 85 08 92
p � .7 13 80 10 97

a One member of each of the selected sib pairs has a phenotypic
score below the “low” percentile, and the other has a phenotypic score
above the “high” percentile.

b Both members of each of the selected sib pairs have a phenotypic
score above (below) the “high” percentile (“low” percentile).

The parameter vector v equals either tv � [a e q q m]a d

or , depending on the gene action at thetv � [a e q m]a

QTL.
The second log-likelihood function is based on the

expected sib-pair covariance matrix, Si. This matrix
equals

3 3

tS � P(t ) � S � L P(t ) � W L ,� �i k i t k i tk k[ ]k�1 k�1

where � denotes the kronecker product. The log-like-
lihood function is

N
1

�L (v) � ln (2p dS d) 2�p i{
i�1

1
t �1exp � (y � m) S (y � m) .i i i[ ]}2

In this approach the correlation between the variables
Qai1 and Qai2 is equal to the expected proportion of
alleles shared IBD by sib pair i, given their marker data.
This correlation, which is denoted “pi,” equals

. The correlation between the variables.5 ∗ P(.5) � P(1)i i

Qdi1 and Qdi2 equals P(1)i. We refer to model fitting
based on Lmix(v) as the “IBD-mixture approach” and to
model fitting based on Lp(v) as the “pi-hat approach.”

Given equal frequency of the marker alleles, we ob-
serve a limited number of IBD probabilities, which define
a total of seven possible groups. Using the results of
Haseman and Elston (1972, table 2) and Boomsma and
Dolan (1998), we can derive the expected frequency of
each group. These are shown in table 1.

As mentioned, Eaves et al. (1996) suggest that, when
marker data are available for only a selected subsample
of sib pairs, the IBD probabilities in unselected sib pairs
be fixed to equal their prior values— ,P(0) � .25

, and . To investigate the effects ofP(.5) � .5 P(1) � .25

assign the prior values of IBD probabilities, we per-
formed three simulation studies. A fourth simulation
study was performed to investigate the effect on the
probabilities of false positives in likelihood-ratio testing
based on the functions Lmix and Lp.

Method

A FORTRAN program was written to simulate phe-
notypic data, determine the IBD probabilities, and max-
imize the raw-data log-likelihood functions—Lmix and
Lp—before and after sib-pair selection. The parental and
offspring biallelic QTL data and marker data were sim-
ulated in the manner described by Eaves and Meyer
(1994). The parental marker and QTL data were used
to create the offspring marker and QTL data. Given the
marker data of the parents and the sib pairs, table 2 of
Haseman and Elston (1972) was used to determine the
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IBD probabilities for each sib pair. Additive polygenic
and environmental data on the sib pairs were simulated
by means of GGNSM, an IMSL (1979) routine to gen-
erate zero mean multivariate normal data.

The log likelihoods are maximized by means of the
FORTRAN routine VARMET, which performs uncon-
strained optimization by means of the variable-metric
algorithm (Koval 1997). To facilitate optimization, the
exact gradients of the raw-data log-likelihood functions
were programmed. These derivatives are given in the
Appendix.

In selecting the sib pairs, we adopt two different se-
lection criteria. These criteria are based on results that
have been presented by Dolan and Boomsma (1998),
who derive optimal selection strategies to maximize the
power of the EDAC (extremely discordant and concor-
dant) test (Gu et al. 1996). The EDAC test combines pi-
hats observed in concordant and discordant sib pairs.
The first criterion does not take into account any prior
knowledge concerning the QTL. We refer to this selec-
tion as “no information selection” (NI selection). The
second selection criterion is supposed to be optimal in
that it is based on prior knowledge concerning both
QTL-allele frequency and gene action. We call this “full
information selection” (FI selection). We include the two
selection criteria to obtain an indication of how the rec-
ommendations presented by Dolan and Boomsma
(1998) perform in tests based on genetic covariance-
structure modeling and to investigate the effects that
different selection criteria have on the parameter
estimates.

Simulation Study 1

The objective of the first simulation study is to inves-
tigate both (1) the effects of assigning prior IBD prob-
abilities in the case of a codominant QTL and (2) the
effects of the two sib pair–selection strategies mentioned
above. The design of this simulation study involves three
between-case factors and one within-case factor. A case
is a single simulated data set. The between-case factors
are (1) total sample size, with two levels ( andN � 5,000

); (2) number of equifrequent marker alleles,N � 10,000
with three levels (8, 12, and 48 alleles); and (3) QTL
(increaser) allele frequency, with three levels (.2, .5, and
.7). The factor relating to the number of alleles can also
be defined in terms of PIC (e.g., see Sham 1998):

, , . The within-casePIC ≈ .861 PIC ≈ .910 PIC ≈ .978
factor has seven levels, denoted (1) “all-Lmix,” (2) “all-
Lp,” (3) “NIsel Lmix,” (4) “NIsel Lp,” (5) “FIsel Lmix,”
(6) “FIsel Lp,” and (7) “no QTL.” The designation “all”
means that all phenotypic and marker data were used
in the analysis; “NIsel” means that all phenotypic data
were used but that the marker data were limited to a
subsample that was selected with the NI-selection cri-

terion, and “FIsel” is defined analogously for the FI-
selection criterion; “Lp” and “Lmix” denote the log-like-
lihood function that was optimized; and “no QTL” re-
fers to the analysis in which the QTL effect is dropped
from the analysis ( ). This analysis provides a base-q � 0a

line log likelihood for calculation of log-likelihood–ratio
statistics.

The additive polygenic variance equals 2, the unshared
environmental variance equals 2, and codominant QTL
variance equals 1. So we have , , and�a � e � 2 q � 1a

. Given the QTL allele frequency, we choose theq � 0d

values of d such that ; that is, the QTL-effect sizeq � 1a

remains constant, although the QTL frequency varies.
In this way we can study the effect of QTL-allele fre-
quency on sib-pair selection, given a constant QTL-effect
size. Figure 1 shows the effects that allele frequency has
on the values of pi-hat, in two situations.

The phenotypic mean depends only on the QTL, and
so it varies with the QTL-allele frequency. For a fre-
quency of , ; for , ; and,p � .2 m ≈ �1.061 p � .5 m � 0
for , . The between-subject design givesp � .7 m ≈ .617
rise to 18 ( ) cells. Within each cell, 500 data3 # 3 # 2
sets were simulated, comprising orN � 5,000 N �

sib pairs. The number of selected sib pairs is10,000
fixed at 500. When the selection was performed, the
selection percentages were changed slightly, to ensure
that the number of selected sib pairs equaled ;500 � 5
the specified selection criteria are given in table 2.

Like Fulker and Cherny (1996), we found very little
difference between the results obtained in the all-Lp con-
ditions and those obtained in the all-Lmix conditions. We
therefore discarded the results obtained in the all-Lp con-
dition. Parameter estimates of m, the phenotypic mean,
have not been reported; in no condition of any of the
simulation studies reported here did these estimates de-
viate appreciably from their expected values. Finally, PIC
was found not to have any important effect on bias of
parameter estimates. We therefore limit our presentation
of results to the (12 equifrequent alleles)PIC � .910
conditions.

Table 3 contains the noncentral (NC) x2 statistics and
the observed power, given a’s of 10�5 and 10�4. Ob-
served power is expressed as the percentage of cases in
which the QTL was detected. Compared with that in
the all-Lmix conditions, the power in the NIsel Lmix con-
ditions is appreciably lower. Limiting the discussion to
case of , we observe a drop in power froma � .00001
∼83%-89% to ∼35%-41%, in the condi-N � 5,000
tions, and from 100% to ∼66%-76%, in the N �

conditions. Comparing the results in the all-Lmix10,000
conditions versus those in the NIsel Lp conditions, we
find that the pi-hat approach is more powerful than the
IBD-mixture approach: the drop in power after selection
is from ∼83%–89% to 68%–71% (for ) andN � 5,000
from 100% to 93%–95% (for ). ComparingN � 10,000



272 Am. J. Hum. Genet. 64:268–280, 1999

Figure 1 Pi-hat as a function of sib-1 and sib-2 phenotypic scores
(score range 1–25). Top, Codominant QTL, . Bottom, Recessivep � .5
QTL, . Contour lines are chosen arbitrarily. Arrows indicate thep � .2
steepness of the gradient of the pi-hat surface. The arrows point in
the direction of increasing pi-hat.

Table 3

NC x2’s ( ) and Observed Power, Given Two adf � 1
Levels, in Simulation Study 1

CONDITIONS

AND STATISTIC

IBD PI

ALL NI FI NI FI

.2/12/5,000:
NC x2:

Mean 31.9 18.6 19.5 28.2 30.1
SD 10.7 8.3 8.4 12.6 13.1

a:
.00001 89 41 46 71 78
.0001 96 59 66 86 89

.2/12/10,000:
NC x2:

Mean 61.3 26.8 31.0 47.3 49.2
SD 14.9 9.8 11.2 17.2 17.7

a:
.00001 100 76 85 95 98
.0001 100 89 94 97 99

.5/12/5,000:
NC x2:

Mean 31.5 18.2 17.4 27.9 27.9
SD 11.3 8.6 8.4 13.2 13.6

a:
.00001 85 41 35 71 71
.0001 94 59 56 83 82

.5/12/10,000:
NC x2:

Mean 61.3 24.4 23.1 43.6 43.2
SD 15.5 9.6 9.5 17.3 17.7

a:
.00001 100 66 63 93 92
.0001 100 85 81 97 97

.7/12/5,000:
NC x2:

Mean 30.6 17.5 17.2 26.7 26.9
SD 10.7 7.8 7.8 11.9 12.1

a:
.00001 83 35 32 68 69
.0001 93 56 57 84 83

.7/12/10,000:
NC x2:

Mean 61.0 25.4 26.5 45.4 46.5
SD 15.4 10.1 10.4 18.2 18.2

a:
.00001 100 68 73 95 96
.0001 100 87 87 97 98

the two selection strategies, we find that the FI-selection
strategy results in a clear increase in power only if the
allele frequency equals .2. In the conditions, FIp � .5
selection results in a decrease in power. In the p � .7
conditions, we observe little difference in power after
NI selection and FI selection when and onlyN � 5,000
a slight gain in favor of FI selection when .N � 10,000

Figure 2 shows bar plots of the errors in the parameter

estimates. Prior to selection, there is hardly any bias in
the estimates. After selection, we find that there is some
bias in the estimates of the polygenic- and QTL-factor
loadings in the NIsel Lmix conditions. Although this bias
is clearly visible when , it is still relativelyN � 10,000
small. In the NIsel Lp conditions, the bias in the genetic-
factor loadings is very large. The QTL effect is overes-
timated, and the polygenic effect underestimated. Full
information selection appears to exacerbate the bias. Es-
pecially in the frequency conditions, the bias isp � .2
evident, regardless of the choice of log-likelihood func-



Figure 2 Study 1: unshared environmental-, polygenic-, and QTL-factor loadings. Error bars represent 95% confidence intervals.
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Table 4

Percentages Associated with FI-Selection
Criterion Used in Simulation Study 2, for N �
20,000

p

DISCORDANT CONCORDANT

Low High Low High

.2 35 97 3 93

.5 13 90 3 93

NOTE.—Definitions/categories are as de-
scribed in the footnotes to table 2.

Table 5

NC x2’s ( ) in Simulation Study 2df � 2

CONDITIONS AND

NC x2 PARAMETERS

ALL FI

IBD PI IBD PI

.2/12/20,000:
Mean 147.5 144.3 224.4 327.3
SD 25.7 25.2 33.5 48.2

.5/12/20,000:
Mean 128.5 128.4 38.6 81.0
SD 21.2 21.2 11.9 25.3

tion. It appears that, insofar as FI selection increases
power, it does so at the cost of increased bias (i.e., over-
estimation of the QTL effect).

Simulation Study 2

The aim of the second simulation study is to inves-
tigate the effects of assigning prior IBD probabilities in
the case of a recessive QTL. This simulation study in-
volves two between-case factors and one within-case fac-
tor. The between-case factors are (1) QTL-allele fre-
quency, with two levels (.2 and .5), and (2) number of
equifrequent marker alleles, with three levels (8, 12, and
48). A low increaser-allele frequency is known to have
a strong effect on the pi-hat surface when the QTL is
recessive (see fig. 1). The additive polygenic variance
equals 2, the unshared environmental variance equals 2,
and QTL variance equals 1. So we have . In�a � e � 2
the conditions, we have andp � .2 q ≈ .577 q ≈a d

, and, in the conditions, we have.816 p � .5 q ≈ .816a

and . Each data set consists of 20,000 sib pairs,q ≈ .577d

and the number of selected sib pairs equals 500. We
choose a large N, because dominance-variance compo-
nents are hard to detect in humans (Eaves et al. 1978;
Neale et al. 1994). Within each of the six conditions
defined by the between-case factors, 500 data sets are
generated. Each data set is analyzed in five ways: (1) all-
Lmix, (2) all-Lp, (3) FIsel Lmix, (4) FIsel Lp, and (5) no
QTL. The selection percentages, which are shown in
table 4, are chosen to maximize the effect of the EDAC
test, given prior knowledge of both allele frequency and
QTL-gene action (i.e., FI). For the reasons mentioned
above, we have limit our discussion to the PIC � .910
(12 marker alleles) results. We do, however, report re-
sults obtained for the all-Lmix and all-Lp conditions, since
they differ slightly.

Table 5 contains the NC x2’s. In the conditions,p � .2
we find that the NC x2’s are much larger after selection
than before selection. Comparing the FIsel Lmix and the
FIsel Lp conditions, we find that the NC x2’s are greater
in the latter conditions than in the former conditions.
Given , in contrast, the NC x2’s are a good dealp � .5
smaller in the FIsel Lmix conditions and the FIsel Lp con-

ditions than they are in either the all-Lmix conditions or
the all-Lp conditions.

Figure 3 displays the bar plots of the error of the
parameter estimates. Prior to selection, very slight bias
is observed. The all-Lmix and all-Lp conditions do not
produce exactly the same estimates, but the differences
are small. After selection, the bias is severe in the fre-
quency conditions. Both QTL parameters (i.e., qap � .2
and qd) are overestimated. The degree of overestimation
is greater in the FIsel Lp conditions than it is in the FIsel
Lmix conditions. The large overestimation of the QTL
effects explains the inflated NC x2 values (table 5). When

, we find that the pi-hat approach still producesp � .5
seriously biased estimates. The IBD-mixture approach,
in contrast, performs a lot better, although some bias is
still visible.

Simulation Study 3

The aim of the third simulation study is to investigate
the effect of sib-pair selection when the codominant QTL
is fitted to data containing recessive QTL effects. It is
likely that, in practice, a codominant model will not be
rejected, even though the QTL action is actually recessive
or dominant.

The present design has three between-case factors: (1)
number of marker alleles (8, 12, and 48), (2) QTL-allele
frequency (.2 and .5), and (3) total sample size (N �

and ). The parameter values equal5,000 N � 10,000
those of the previous simulation study. The selection
criteria are chosen without regard for either allele fre-
quency or mode of QTL-gene action (i.e., NI selection).
The criteria are shown in table 2. The present design
gives rise to six cells. Within each cell, 250 data sets are
generated. Each data set is analyzed five times: (1) all-
Lmix, (2) all-Lp, (3) NIsel Lmix, (4) NIsel Lp, and (5) no
QTL. The number of selected sib pairs equals 500, re-
gardless of N. We limited our presentation of results to
the (12 marker alleles) conditions. As in sim-PIC � .910
ulation study 1, the differences between the all-Lmix and
all-Lp conditions are very small. We therefore discard
the results observed in the all-Lp conditions.

Table 6 contains the NC x2 values and the observed
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Figure 3 Study 2: unshared environmental-, polygenic-, and QTL-factor loadings. Error bars represent 95% confidence intervals.

power, given and . When ,a � .0001 a � .00001 p � .2
we again find that the pi-hat approach produces larger
NC x2 values when selected data are analyzed than when
all data are analyzed. It is striking that the larger mean
NC x2 is not accompanied by greater power (i.e., all-
Lmix is ∼85%, and NIsel Lp is ∼82%, for ).a � .00001
This indicates that the log-likelihood–ratio statistics pro-
duced by NIsel Lp deviates somewhat from its expected
NC x2 ( ) distribution (presumably its tail isdf � 1
lighter). In the conditions, the NC x2 observedp � .5
in the NIsel Lp conditions are smaller than those ob-
served in the all-Lmix conditions. As above, we find that,
after selection, the pi-hat approach appears to be a lot
more powerful than the IBD-mixture approach.

Figure 4 displays plots of the error of the parameter
estimates. After sib-pair selection, the pi-hat approach

produces very biased estimates, regardless of the QTL-
allele frequency. As expected now, the QTL effect is over-
estimated, and the bias is greatest in the condi-p � .2
tions. The overestimation of the QTL effect is accom-
panied by an underestimation of the polygenic effects.
The environmental effects are overestimated in the

conditions but are quite accurate in thep � .2 p � .5
conditions. After sib-pair selection, the IBD-mixture ap-
proach also produces biased results in the con-p � .2
ditions; the QTL effect and the environmental effects are
overestimated, and the polygenic effects are underesti-
mated. Overall the bias is considerable, but it is a lot
smaller than the bias observed when the pi-hat approach
is used. In the conditions, there is some evidencep � .5
of bias in the conditions; however, this biasN � 10,000
is very slight.
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Table 6

NC x2’s ( ) and Power, Given Two adf � 1
Levels, in Simulation Study 3

CONDITIONS

AND STATISTIC

IBD
ALL

NI

IBD PI

.2/12/5,000:
NC x2:

Mean 30.6 25.2 32.6
SD 11.7 11.0 14.2

a:
.00001 85 69 81
.0001 92 80 88

.2/12/10,000:
NC x2:

Mean 62.1 55.0 77.2
SD 16.5 17.7 24.4

a:
.00001 100 99 100
.0001 100 100 100

.5/12/5,000:
NC x2:

Mean 31.0 17.9 27.3
SD 10.9 8.1 12.6

a:
.00001 85 35 68
.0001 95 60 84

.5/12/10,000:
NC x2:

Mean 61.4 25.5 44.3
SD 15.7 10.1 18.0

a:
.00001 100 72 94
.0001 100 87 98

Simulation Study 4

The aim of the final simulation study is to investigate
the distribution of the log-likelihood–ratio statistic in
the absence of any QTL effect. This statistic is distributed
asymptotically as a .5:.5 mixture of a x2(1) and a point
mass at 0 (Sham 1998, p. 93).

In the present simulation study, the parameter values
are , and . The design has two�a � e � 2 q � q � 0a d

between-case factors: frequency (.2, .5, and .7) and num-
ber of marker alleles (8, 12, and 48). Within each of the
nine cells of this design, we simulate 1,000 data sets.
Each data set comprises 5,000 sib pairs, of which 500
are selected. The same (i.e., NI) selection criterion is used
as is used in simulation study 1 (see table 2). Each data
set is analyzed five times: (1) all-Lmix, (2) all-Lp, (3) NIsel
Lmix, (4) NIsel Lp, and (5) no QTL. The models with and
without the parameter qa are fitted to each data set, and,
as above, the log-likelihood–ratio statistic is calculated
as minus twice the difference in the two log likelihoods.

Table 7 contains the mean and the SDs of the log-
likelihood–ratio statistics (x2’s), and the false-positive
error rate is . The results in table 7 indicatea � .025
clearly that, following selection, the pi-hat approach

does not produce the expected distribution of the good-
ness-of-fit statistic. The results produced by all-Lmix, all-
Lp, and NIsel Lmix do agree with expectation.

Comparison with the Power of the EDAC test

The results of the present studies provide some insight
into the power of QTL-effect tests based on covariance-
structure modeling, before and after sib-pair selection.
We are not aware of any comparison of the power af-
forded by the EDAC test versus the power of covariance-
structure modeling. To obtain an indication of the dif-
ference in power, we replicated a small number of the
conditions of simulation studies 1 and 3. We report the
observed power for the 12-marker-allele and N �

conditions. Selection is again limited to 500 sib5,000
pairs (see table 2). The observed power is expressed as
the percentages of cases in which the QTL is detected.
In each condition, we perform 500 replications. In ad-
dition to the observed power, given the 12-allele-marker
condition, we report the expected power for .PIC � 1
Power for is calculated analytically (not byPIC � 1
means of simulation) in the manner described by Gu et
al. (1996) and Risch and Zhang (1995).

Table 8 contains the results of the simulations and of
the power calculations. As in simulation studies 1 and
3, we report the results for and .a � .0001 a � .00001
Comparing the results in tables 3 and 8, we find that
the power afforded by the EDAC test is much lower.
After selection, the power afforded by the EDAC test is
∼21%, given . The power of the IBD-mix-a � .00001
ture approach is ∼38%, and the power of the pi-hat
approach is ∼70%. After FI selection, we find the fol-
lowing percentages: 26% (EDAC), 36% (IBD mixture),
and 73% (pi-hat). Similar results are observed in the
conditions of simulation study 3. The expected power
of the EDAC test when is found to be com-PIC � 1
parable to the power of the IBD-mixture approach, given
a 12-allele marker ( ), and is much smaller thanPIC � .91
the power of the pi-hat approach.

Discussion

On the basis of the present results, we can draw a
number of conclusions. First, after the assignment of
prior IBD probabilities, the pi-hat approach produces
seriously biased parameter estimates. The QTL effect is
found to be consistently overestimated. The degree of
overestimation varies with the selection criterion and the
allele frequency of the QTL. The more extreme the allele
frequency, the greater the bias. Compared with the NI-
selection strategy, the FI-selection strategy produces
greater bias. The degree of bias is most evident in sim-
ulation study 2, in which the FI-selection strategy was
adopted and the allele frequency was low ( ). Thep � .2



Figure 4 Study 3: unshared environmental-factor loadings and additive polygenic-factor loadings. Error bars represent 95% confidence
intervals.
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Table 7

Simulation Study 4: Data for �2 # Difference in Log
Likelihood, and for , Calculated With Anda � .025
Without the Absent QTL Effect, for N � 5,000

CONDITION AND

PARAMETERa

ALL NI

IBD PI IBD PI

.2/8:
Mean .455 .455 .458 .688b

SD 1.14 1.14 1.11 1.66b

False positive (%) 2.0 1.9 2.1 5.1c

.2/12:
Mean .550 .550 .573b .862b

SD 1.00 1.00 1.10 1.81b

False positive (%) 2.8 2.8 2.7 6.7c

.2/48:
Mean .539 .539 .544 .816b

SD 1.22 1.22 1.14 1.71b

False positive (%) 3.0 3.0 2.9 6.1c

.5/8:
Mean .534 .535 .515 .782b

SD 1.14 1.14 1.09 1.67b

False positive (%) 3.2 3.3 2.5 6.0c

.5/12:
Mean .518 .518 .527 .797b

SD 1.15 1.15 1.19 1.79b

False positive (%) 2.6 2.6 2.8 5.6c

.5/48:
Mean .483 .483 .452 .682b

SD 1.16 1.16 1.09 1.64b

False positive (%) 2.7 2.7 1.9 4.8c

.7/8:
Mean .513 .512 .500 .754b

SD 1.15 1.15 1.17 1.71b

False positive (%) 2.7 2.7 2.2 5.5c

.7/12:
Mean .533 .533 .526 .796b

SD 1.13 1.13 1.21 1.83b

False positive (%) 2.7 2.7 3.0 5.8c

.7/48:
Mean .478 .478 .477 .720b

SD 1.06 1.06 1.13 1.71b

False positive (%) 2.5 2.5 3.3 5.5c

NOTE.—Summary statistics are based on 1,000 replica-
tions. Expected value of mean � .50 (approximate 99%
confidence interval � .417–.561); value of SD � 1.118
( ) (approximate 99% confidence interval ��1.25
.889–1.33); and expected value of false-positive rate � 2.5.

a False-positive rates are for .a � .025
b Outside 99% confidence interval.
c .P ! .001

Table 8

Power of EDAC in Conditions of SimulationN � 5,000
Studies 1 and 3

SIMULATION STUDY

AND CONDITION T j

a �

.0001 .00001

I (codominant QTL):
NI:

.2/12 .112 .032 .42 .20

.5/12 .113 .032 .41 .21

.7/12 .112 .032 .42 .22

.2/� .123 .032 .56 .35

.5/� .125 .032 .55 .37

.7/� .124 .032 .57 .36
FI:

.2/12 .125 .034 .49 .27

.5/12 .117 .033 .42 .21

.7/12 .118 .033 .43 .25

.2/� .140 .035 .62 .41

.5/� .130 .033 .58 .36

.7/� .130 .032 .61 .40
III (recessive QTL), NI:

.2/12 .088 .032 .17 .06

.5/12 .112 .032 .43 .24

.2/� .100 .032 .29 .13

.5/� .122 .032 .55 .33

NOTE.—EDAC test statistic � T/j, which has a standard
normal distribution under the null hypothesis of no QTL
effect (Gu et al. 1996, p. 516).

overestimation of the QTL effect results in an increase
in power of the log-likelihood test of the QTL effect. In
extreme cases (e.g., simulation study 2), the power after
selection exceeds that observed when all marker data are
analyzed. This finding is reminiscent of a finding pre-
sented by Gershenfeld et al. (1997): in mapping QTLs
for open-field activity in mice, they report a significant
result in phenotypically selected mice, which disap-
peared when the entire sample was analyzed. In human
samples, a similar discrepancy could arise because of the

overestimation of the QTL effect, especially after highly
selective sampling.

The conclusions concerning the pi-hat approach apply
to the IBD-mixture approach, but to a lesser extent. In
the first simulation study, the estimates of the QTL ef-
fects are seriously biased only when the allele frequency
is extreme and the selection strategy is based on FI. Com-
pared with the bias observed in the pi-hat approach, the
bias is a lot smaller. There is other evidence of bias, but
this bias is relatively small. In both simulation study 2
and simulation study 3, the bias produced by the IBD-
mixture approach is evident when .p � .2

The final simulation study of the behavior of the log-
likelihood ratio under the null model indicates that the
ratios produced by the pi-hat approach after selection
are not distributed according to the expected distribu-
tion. In the IBD-mixture approach, on the other hand,
the means and SDs of the expected distribution are in
line with expectation.

A secondary aim of the present paper has been to
compare the performance, in genetic covariance-struc-
ture modeling, of FI selection versus that of the more
realistic, NI selection. Compared with NI selection, FI
selection was effective only when the allele frequency
was extreme. Elsewhere, FI selection is quite ineffec-
tive—or even counterproductive. Specifically, in simu-
lation study 1, FI selection was counterproductive when

. We performed additional simulations involvingp � .5
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other selection criteria, to get an idea of the sensitivity
of NC x2 to selection. Simulation study 1 was repeated,
with two extreme selection strategies: one in which the
majority (190% of a total of 500 sib pairs) of selected
sib pairs were discordant and one in which the majority
(195%) of sib pairs were concordant. Limiting ourselves
to the IBD-mixture approach and to , we ob-N � 5,000
serve a drop in NC x2, from ∼31.5 to 9.0, when mainly
concordants were selected, and from ∼31.5 to 17.0,
when mainly discordants were selected. This difference
is expected, since discordant sib pairs are generally more
informative than concordant sib pairs (e.g., see Eaves
and Meyer 1994; Risch and Zhang 1995). The mean
NC x2 observed in simulation study 1 went from ∼31.1
to ∼17.9, given NI selection, and from 31.1 to ∼19.8,
given FI selection. These findings suggest that, as long
as the majority of the selected sib pairs are discordant,
the NC x2 is relatively insensitive to the exact selection
criterion.

An additional result observed after the selection of
mainly concordant or mainly discordant sib pairs is that
the selection of mainly discordant results in a lot less
bias when the pi-hat approach is used. After the selection
of mainly concordants, the means of the polygenic- and
QTL-factor loadings are ∼.973 (true: ) and ∼1.366,�2
respectively (true: 1.00). After the selection of mainly
discordants, these means were found to be ∼1.331 and
∼1.09, respectively—a lot closer to their true values. A
similar result is observed in simulation study 1, in which
FI selection resulted in the selection of more concordants
(see table 1)–and, consequently, in more bias (see fig. 2).

To explore the effects that the background correlation
has on the parameter estimates after sib-pair selection,
we repeated simulation study 1, with a background cor-
relation of 0. This implies the absence of shared envi-
ronmental or polygenic influences. The unshared envi-
ronmental effects explained 80% of the variance. After
NI selection (see table 2), we observed very little bias in
the estimates of the codominant QTL and the unshared
environmental effects. Parameter bias was absent in both
the pi-hat approach and the IBD-mixture approach. So,
in addition to the selection criterion, the background
correlation is an important contributing factor to bias,
after the assignment of prior IBD probabilities. Appar-
ently, a larger background correlation is associated with
greater bias.

The assignment of prior IBD probabilities in genetic
covariance-structure modeling of a QTL cannot be
trusted to produce unbiased parameter estimates. How-
ever, if it assumed that the QTL frequencies are not too
extreme (1.2) and NI selection is applied (which will
generally be the case), the bias produced by the IBD-
mixture approach may be slight. Both the IBD-mixture
approach and the pi-hat approach can be used to detect
the presence of a QTL. The null distribution of the log-

likelihood ratio produced by the IBD-mixture approach
was not found to deviate from the expected distribution.
The pi-hat approach produces excessive false positives,
but this can be counteracted, to a degree, by adjustment
of the a level.

We have been concerned mainly with the estimates
and power of genetic covariance-structure modeling of
QTL effects after sib-pair selection; however, we did con-
sider the power of the EDAC test (Gu et al. 1996) in
the conditions of simulation studies 1 andN � 5,000
3. The EDAC test is found to be consistently a lot less
powerful. Clearly, in terms of power, genetic covariance-
structure modeling of QTL effects in sib-pair data is
superior to tests based on allele-sharing information.

We have limited our attention to the assignment of
prior IBD probabilities as suggested by Eaves et al.
(1996). There are other ways of obtaining IBD proba-
bilities in sib pairs whose marker data are missing. As
discussed by Sham (1998, p. 266), posterior IBD prob-
abilities can be based also on the phenotypic data (in-
stead of the marker data), by application of Bayes’s the-
orem. In normal mixture analysis, this is the standard
method of calculating posterior probabilities of com-
ponent membership (e.g., see Everitt and Hand 1981, p.
10). Another possibility is to exploit the regularity of
the pi-hat surface (see fig. 1). It may be possible to con-
struct the whole pi-hat surface from the parts of the
surface that are observed by means of interpolation.
These possibilities have yet to be investigated properly.
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Appendix

Derivatives of the pi-hat and IBD-Mixture Approach:
Raw-Data Likelihood Functions

We first consider the log-likelihood function Lmix(v)
(eq. [2]). Let denote the bivariate normal dis-f (y ; m,S )t i tk k

tribution conditional on the marker data. Let g �i

, and let . We re-3S P(t ) f q � P(t ) f (y ; m,S )/gi ik�1 k i t t k i t i t ik k k k

quire the derivatives

�L (v)�L �mix

N 3

�L (v)/�S �S /�L ,�� mix t tk k
i�1 k�1
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where

1
�1�L (v)/�S � q [S (y � m )imix t t t ik k k2
t �1 �1(y � m ) S � S ] ,i t tk k

and . The matrix �Lmix(v)/�L contains the�S /�L � 2LWt tk k

derivatives of Lmix with respect to the parameters a, e,
qa, and qd. Furthermore we require the derivatives of
Lmix with respect to the phenotypic mean vector, m. This
equals

N 3

�1�L (v)/�m � q S (y � m) .�� imix t t ik k
i�1 k�1

Likewise, for the log-likelihood function, Lp we have

N

�L (v)/�L � �L (v)/�S �S/�L ,�p p i
i�1

where

�L (v)/�Sp

1
�1 t �1 �1� S (y � m)(y � m) S � S ,[ ]i i i i i2

and . Finally, we require�S /�L � 2LWi i

N

�1�L (v)/�m � S (y � m) .�p i i
i�1
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